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A Direct Route to C-Vinylaziridines: Reaction of N-Sufonylimines
with Allylic Ylides under Phase-Transfer Conditions or with
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Allylic sulfonium salts 3, 5, 7, 11, 12, 13, and arsonium salt 14 react with aromatic, heteroaromatic,
and a,S-unsaturated N-sulfonylimines under solid—liquid phase-transfer conditions in the presence
of KOH at room temperature to produce, respectively, vinyl-, (3-phenylvinyl)-, and [3-(trimethylsilyl)-
vinyl]aziridines in excellent yields within several minutes. In some cases, pyrroline compound 9
is obtained as a minor product. This aziridination reaction has also been carried out with preformed
ylides, generated from sulfonium salts 3, 7, arsonium salt 14, and telluronium salts 15, 16 with a
base in THF at —78 °C. In most examples, quantitative yields were achieved. However, the trans/
cis selectivity of the reaction was not high in either case. A semistable allylic sulfonium ylide, i.e.,
dimethylsulfonium 3-(trimethylsilyl)allylide, was found to not undergo an expected [2,3]-0-
rearrangement and so can also be used in this reaction.
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Introduction

Because of their useful chemical reactivity, aziridines
have seen extensive applications in organic synthesis.!?
Among the variously functionalized aziridines, vinylaziri-
dine 1 has proven to be the most interesting, and many
useful intermediates have derived from it through vari-
ous transformations® and rearrangements.* However,
methods for the preparation of vinylaziridines are few.
A multistep sequence with low overall yields and trouble-
some operations has often been used.?242d Therefore, the
development of practical and facile methods for preparing
vinylaziridines is warranted. A retrosynthetic analysis
of vinylaziridine reveals that paths a and b are two
discrete disconnections of the nitrogen-containing three-
membered ring (Scheme 1). For path b, desired chemose-
lectivity might be diminished when unsymmetric dienes
are used.> Path a involves the reaction of an imine with
a vinylcarbene or an allylic ylide. To our knowledge, no
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method using vinylcarbenes has been reported. For the
allylic ylide route, two problems must first be solved: the
activation of the imine® and the prevention of [2,3]-0-
rearrangement’ of the allylide if sulfonium ylide is used.
In our preliminary paper,® we reported an efficient
method for preparing N-sulfonylvinylaziridines via an
ylide route by very simple operations under extremely
mild conditions. We disclose herein our detailed inves-
tigation of this reaction.

Results and Discussion

Preparation of N-Sulfonylvinyl-, (-Phenylvinyl)-,
and [#-(Trimethylsilyl)vinyl]aziridines under Phase-
Transfer Conditions. In contrast to the extensive
research reported on ylide olefination, cyclopropanation,
and epoxidation reactions,® aziridination via an ylide
route has attracted little attention and only a few
examples (limited to a methylene group transferring to
C=N bond) have appeared in the literature.l® This is due
to the low reactivity of N-alkyl- oraryl-substituted imines
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toward the attack of nucleophiles relative to that of
carbonyl compounds and Michael acceptors, an activator
being required in several instances.!* Our success with
asymmetric epoxidations by way of optically active sul-
fonium ylides under phase-transfer conditions!? encour-
aged us to apply our ylides to the aziridination of imines,
considering that aziridines are sometimes even more
useful intermediates in the synthesis of nitrogen-contain-
ing biologically important substances.'24?¢ In Scheme 2,
the reaction of dimethylsulfonium cinnamylide, gener-
ated from salt 5, with PhCH=NPh gave no sign of
aziridine either under phase-transfer conditions (eq 1)
or using a preformed ylide (eq 2). From both experi-
ments, the recovered imine and the rearranged allylide
were obtained. The same is true even for the more
reactive sulfinimines (eq 3). It is the previously-
mentioned two obstacles that make these ylide aziridi-
nation reactions unsuccessful. The former obstacle, i.e.,
the low reactivity of common imines, may be overcome
by using activated imines. The atomic net charges of
PhCHO, PhCH=NPh, and PhCH=NTs according to
semiempirical AML1 calculations (HyperChem Release 3
from Hypercuban, Inc., and Autodesk, Inc., 1993) indicate
that the qualitative order of electrophilicity is PhACH=NTs
> PhCHO > PhCH=NPh.2® In addition, we observed
that sulfonium salt 5 reacts with PhCHO in the presence
of solid KOH in CH3;CN at room temperature to furnish
the corresponding vinyloxirane in 74% yield within 30
min.}* So, the reactive N-tosylimine 2c might be a
suitable candidate for our designed ylide aziridination
reaction from the perspective of reactivity. The second
obstacle, i.e., the [2,3]-o-rearrangement of allylic sulfo-
nium ylides, might be overcome by carrying out our
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reaction under solid—liquid phase-transfer conditions,
considering that in our previous attempt to prepare
vinyloxirane with sulfonium salt 5 the reaction of the
dimethylsulfonium cinnamylide, generated in situ by the
deprotonation of sulfonium salt 5 with KOH, with Ph-
CHO to form an epoxide was much faster than the [2,3]-
o-rearrangement of the same ylide. We were lucky to
find that the reaction of the activated imine, N-tosylimine
2c¢c, with dimethylcinnamylsulfonium bromide (5) is
tremendously different from that of the unactivated
imines, in the presence of KOH at room temperature. The
reaction afforded vinylaziridine 6¢c much more readily
than we expected (eq 4 in Scheme 2).

In order to optimize the conditions for the reaction
shown in eq 4 in Scheme 2, the effects of solvent and base
on this reaction were investigated (Table 1).

Acetonitrile, dichloromethane, and tetrahydrofuran are
suitable solvents for this reaction, acetonitrile being the
best. Among various bases, solid KOH gave the highest
yield. Under such conditions, the reaction proceeded so
fast that no aldehyde from the hydrolysis of the imine
was detected. Interestingly, even an organic base NEt;
could be used in this reaction (entry 9 in Table 1).

Results from the reaction of N-sulfonylimines with
dimethylallylsulfonium bromide (3a), diphenylallylsul-
fonium perchlorate (3b), dimethylcinnamylsulfonium
bromide (5), [3-(trimethylsilyl)allyl]dimethylsulfonium
bromide (7a), and [3-(trimethylsilyl)allyl]diphenylsul-
fonium perchlorate (7b) under the optimized condition
are summarized in Table 2.

A variety of allylic ylides, i.e., from the simplest
dimethylsulfonium allylide to cinnamylide and silylated
dimethylsulfonium allylide, and various N-sulfonylimines
containing aromatic, heteroaromatic, and o,3-unsatur-
ated moieties perform in this aziridination reaction. But,
in the case of the o,8-unsaturated N-sulfonylimine (entry
19 in Table 2), we obtained a mixture of N-(benzene-
sulfonyl)-trans-2,3-bis(5-phenylvinyl)aziridine (trans-6g)
and N-(benzenesulfonyl)-cis-4,5-diphenyl-4,5-dihydroaze-
pine (18), which was derived from a rapid, room temper-
ature Cope rearrangement of the cis isomer (cis-6g)*®
(Scheme 3).

The reaction was complete, usually within several
minutes in almost quantitative yields in most examples.
However, the trans/cis ratio of the product was rather
low and needed to be improved. Attempts to improve the
trans/cis selectivity of this reaction by introducing an
ortho-substituent, such as a methoxy (entries 2, 11, 14,
21, and 25 in Table 2) or two chlorine atoms (entry 3 in
Table 2) on the phenyl ring proved to be inefficient. The
steric hindrance only diminished the yield and prolonged
the reaction time (entry 3 in Table 2). A bulky a-naph-
thyl substituent on the imino carbon of N-tosylimine also
failed to improve the trans/cis ratio of the product (entries
9, 12, 23, and 26 in Table 2). A possible mechanism for
this reaction is shown in Scheme 4.

One proton a to the sulfur atom of sulfonium salt I is
first extracted by the base to form an ylide Il. Imine is
then attacked by the ylidic carbon to produce a zwitte-
rionic intermediate I1l1. Sulfide is subsequently lost,
furnishing vinylaziridine 1V.

Several allylic sulfonium salts were employed to in-
vestigate the effect of ligands connected to the sulfur

(15) (a) Stogryn, E. L.; Brois, S. J. J. Org. Chem. 1965, 30, 88. (b)
Pommelet, J. C.; Chuche, J. Can. J. Chem. 1976, 54, 1571. (c)
Pommelet, J. C.; Chuche, J. Tetrahedron Lett. 1974, 3897.
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Table 1. Effects of Solvent and Base on the Ylide Aziridination of N-Sulfonylimines 2 with Dimethylallylsulfonium
Bromide (3a) under Phase-Transfer Conditions?

" 1
base R
RICHEN-Ts  + Mes” N\ _22%€ | }Wi

Br sohent, t H

2 N

3a Ts

4

reaction recovered
entry R base/solvent time (min) yield,” % trans/cis® aldehyde,? %

1 phenyl KOH/CH3;CN 5 93 (4h) 58/42 0
2 phenyl KOH/CHCl; 6 83 (4h) 52/48 5
3 phenyl KOH/THF 5 81 (4h) 66/34 9
4 p-chlorophenyl KOH/CH3CN 5 82 (49) 47/53 0
5 p-chlorophenyl NaOH/CH3CN 15 63 (49) 58/42 18
6 p-chlorophenyl 50% NaOH(aq)/CH3sCN 20 53 (49)® 62/38 23
7 p-chlorophenyl K2CO3/CH3CN 55 71 (49) 60/40 13
8 p-chlorophenyl KF.Al;03/CH3CN 60 53 (49) 63/37 22
9 p-chlorophenyl NEt3/CH3;CN 40 32 (49) 61/39 37
10 p-chlorophenyl Ba(OH),.8H,0/CH3CN 80 26 (49) 59/41 56
11 p-chlorophenyl LiOH.H,O/CH3CN 150 17 (49) 56/44 62
12 p-chlorophenyl KF.2H,0/CH3CN 300 14 (49) 52/48 39

a All reactions were carried out under solid—liquid phase-transfer conditions at room temperature in a ratio of imine:sulfonium salt:
base = 1:1.2:1.2 on a 0.5-mmol scale in a solvent. ° Isolated yields based on imine. ¢ Determined by 300 MHz *H-NMR analysis. ¢ Produced
by the hydrolysis of imine. ¢ 18% of 2-(p-chlorophenyl)-3-vinyloxirane (trans/cis: 58/42) was isolated.

Table 2. Preparation of Vinyl-, (-Phenylvinyl)-, and [#-(Trimethylsilyl)vinyl]aziridines 4, 6, or 8 by the Reaction of
Sulfonium Salts 3, 5, or 7 and N-Sulfonylimines 2 under Phase-Transfer Conditions?

R3
1
KOH(s;
R' CH=N—SOZ—®—R2 + R;é/—\/\R3 —()>
X CH,CN, 1t N H
2 3a: R=Me; X=Br; R®=H \
3b: R=Ph; X=CIO; R®=H SOZ—Q—RZ
5. R=Me; X=Br,R>=Ph 4R=H
7a: R= Me; X=Br; R = SiMe; 6: R®= Ph
7b: R= Ph; X= ClO, R® = SiMe; 8: R®= SiMe,
reaction
entry R! R2 R3 R X time (min) yield,” % cis/trans®
1 p-nitrophenyl Me H Me Br 5 54 (4a) 53/47
2 o-methoxyphenyl Me H Me Br 15 92 (4b) 61/39
3 2,6-dichlorophenyl Me H Me Br 80 36 (4c)d 56/44
4 3-pyridinyl Me H Me Br 5 82 (4d)? 65/35
5 p-methylphenyl H H Me Br 5 84 (4e) 34/66
6 p-methoxyphenyl H H Me Br 15 95 (4f) 45/55
7 p-chlorophenyl Me H Me Br 5 82 (49) 53/47
8 phenyl Me H Me Br 5 93 (4h) 58/42
9 a-naphthyl Me H Me Br 30 75 (41) 55/45
10 p-chlorophenyl Me H Ph ClO4 5 69 (49) 44/56
11 o-methoxyphenyl Me H Ph ClO4 10 77 (4b) 27173
12 a-naphthyl Me H Ph ClO, 8 75 (4i) 46/54
13 p-nitrophenyl Me Ph Me Br 5 75 (6a) 51/49
14 o-methoxyphenyl Me Ph Me Br 10 96 (6b) 70/30
15 phenyl Me Ph Me Br 5 95 (6¢) 63/37
16 p-methylphenyl H Ph Me Br 5 89 (6d) 75125
17 p-methoxyphenyl H Ph Me Br 5 94 (6e) 57/43
18 p-chlorophenyl Me Ph Me Br 5 96 (6f) 52/48
19 trans-PhCH=CH H Ph Me Br 5 92 (60) 64/36°
20 phenyl Me SiMes Me Br 4 97 (8a) 29/71
21 o-methoxyphenyl Me SiMes Me Br 18 96 (8b) 32/68
22 p-chlorophenyl Me SiMes Me Br 4 86 (8c) 42/58
23 a-naphthyl Me SiMes Me Br 20 93 (8d) 35/65
24 phenyl Me SiMe; Ph ClO4 4 85 (8a) 25/75
25 o-methoxyphenyl Me SiMes Ph ClO4 12 97 (8b) 45/55
26 a-naphthyl Me SiMes Ph ClO, 15 97 (8d) 29/71

a All reactions were carried out under solid—liquid phase-transfer conditions at room temperature in a ratio of imine:sulfonium salt:
KOH(s) = 1:1.2:1.2 on a 0.5-mmol scale in acetonitrile. ? Isolated yields based on imine. ¢ Determined by 300 MHz H-NMR analysis.
d 53% of imine was recovered. The yield could not be improved by lengthening the reaction time. & 16% of 2-(3-pyridinyl)-3-vinyloxirane
(trans/cis = 2:1) from the reaction of ylide and aldehyde generated by the hydrolysis of imine was isolated. f This ratio refers to that of
the rearranged product N-(benzenesulfonyl)-cis-4,5-diphenyl-4,5-dihydroazepine (18) and N-(benzenesulfonyl)-trans-2,3-bis(5-phenylvinyl)-
aziridine (trans-69).

atom of sulfonium salts in our ylide aziridination (Table ligands on the sulfur atom did not improve the trans/cis
3). Itwas found that an increase in the bulkiness of the selectivity of the reaction, but rather led to the formation



4644 J. Org. Chem., Vol. 61, No. 14, 1996

Li et al.

Table 3. Effect of Ligands on the Sulfur Atom in Allylic Sulfonium Salts on the Ylide Aziridination under
Phase-Transfer Conditions?

Cl

R +
C"@‘CH=N—TS c N __.QT"?T + @—an
Rz/ X CH4CN, 1t H ,|\, H rl\l

29 10
Ts Ts
4g 9
entry sulfonium salt reaction 4g 9, %
time (min) vield,® % transicis ©
+
1 Me,s” N\ g; 82 53/47 0
3a
+ -
2 Et,s” N\ Br 41 55/45 25
11
+ -
3 Ph,s” N\ ClO, 69 44/56 23
3b
4 'Y'e
Ph—8" \F_ 75 39/61 16
+ C|O4
12
5 We
NA_ 83 50/50 0
OH Br
13

a All reactions were carried out under solid—liquid phase-transfer conditions at room temperature in a ratio of imine:sulfonium salt:
KOH(s) = 1:1.2:1.2 on a 0.5-mmol scale in CH3CN. P Isolated yields based on imine. ¢ Determined by 300 MHz 'H-NMR analysis.

Scheme 3

[3.3]-

Scheme 4
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Ar = p-MeCgHy)

of a pyrroline product 9 as a minor product (entries 2—4
in Table 3). Product 9 is thought to be formed by an
intramolecular 1,5-elimination of the zwitterionic inter-
mediate 111 in Scheme 4.

Several allylides of As, Te, and P have also been
studied in our aziridination reaction. Allylic arsonium
ylide generated in situ from allyltriphenylarsonium
bromide (14) by KOH reacts with N-sulfonylimine 2c to
give vinylaziridine 4h in moderate yield (Scheme 5).
However, allylic telluronium (from 15) and phosphorus
(triphenylphosphonium allylide) ylides did not form an
aziridine with N-sulfonylimine 2c, but rather the hydro-
lyzed product, PhCHO, was recovered almost quantita-

Scheme 5
Ph —
+ KOH(s)
PhCH=NTs + Phas” Y — H"}W{
2 Br CH;CN, rt, 30 min ';j H
14 Ts
4h 40%

transicis: 54/46

tively. The obviously high reactivity of allylic sulfonium
ylides, compared with the corresponding arsonium, tel-
luronium, and phosphorus ylides, made them the best
choice for the aziridination reaction.

It is noteworthy that N-sulfonylimines have been
reported to react with an oxosulfonium methylide
Me,S(O)"CH,™ to give azetidines instead of aziridines.'®
In all of our reactions, no azetidine was detected.
Recently, Matano et al.}” found that triphenylbismutho-
nium 2-oxoalkylides reacted with N-sulfonylimines to
form aziridinyl ketones.

Preparation of Vinylaziridines with Preformed
Ylides at Low Temperature. Clearly, the trans/cis
selectivity in forming the above-mentioned vinylaziri-
dines under phase-transfer conditions is low. Efforts to
improve the stereoselectivity of this reaction by exposure
of N-sulfonylimines to preformed sulfonium, arsonium,
and telluronium ylides have been made. Results are
shown in Table 4.

Allylic sulfonium, arsonium, or telluronium salts in
THF were treated with a base at —78 °C for 5—30 min
to generate the corresponding ylides. Imines in THF
were subsequently added to the ylide solution and
allowed to warm to room temperature. Vinylaziridines
were obtained after workup. Ylides generated from

(16) Nadir, U. K.; Koul, V. K. Synthesis 1983, 554.
(17) Matano, Y.; Yoshimune, M.; Suzuki, H. J. Org. Chem. 1995,
60, 4663.
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Table 4. Preparation of Vinylaziridine 4g and [f-(Trimethylsilyl)vinyl]aziridines 8 by the Reaction of Allylic or

Silylated Allylic Sulfonium, Arsonium, and Telluronium Ylides and N-Sulfonylimines at —78 °C2&

+
57N R
3a, 3b: R'= H; R!
7a, 7b: R'= SiMe, 1) base, THF, 78 C R
+ ase, =
i-BuzTe/_\/\R1 > + %q
Br 2) RCH=NTs (2), THF, 78 °Ctort 1y N H N
15: R'= H; 16: R'= SiMe; [
+ Ts Ts
Ph3As/_\/ 4gor8 9
Br 14
4gor 8
entry R R! salt base yield,” % trans/cis® 9, %
1 p-CICsHa4 H 3a n-BuLi 32 (49) 59/41 0
2 p-CICeHa4 H 3a KN(SiMes)» 35 (49) 61/39 0
3 p-CICeHa4 H 14 LiN(SiMes), 25 (49) 70/30 10
4 p-ClCeHa4 H 14 KN(SiMes)» 21 (49) 54/46 15
5 p-CICeHa4 H 15 LiBr + KN(SiMes) 57 (49) 55/45 0
6 p-CICeHa4 H 15 KN(SiMes), 79 (49) 45/55 0
7 p-CICeH4 H 3b n-BuLi 68 (49) 41/59 23
8 p-ClICeHa4 H 3b LiN(SiMes)» 83 (49) 41/59 12
9 p-CICeHa4 H 3b KN(SiMes)» 61 (49) 35/65 17
10 p-ClICeH4 SiMes 16 KN(SiMes), 39 (8c) 33/67
11 p-CICgH4 SiMes 7b n-BuLi 97 (8c) 37/63
12 p-CICeHa4 SiMes 7b LiN(SiMe3)» 98 (8c) 42/58
13 p-CICeHa4 SiMes 7b NaN(SiMes), 98 (8c) 39/61
14 p-CICeH4 SiMes 7b KN(SiMes), 98 (8c) 45/55
15 p-CICsH4 SiMes 7a n-BuLi 95 (8c) 61/39
16 p-CICeHa4 SiMes 7a LiN(SiMes). 92 (8c) 67/33
17 p-CICeH,4 SiMes 7a NaN(SiMes), 92 (8c) 59/41
18 p-C|C6H4 SiMe3 7a KN(SiME3)2 98 (80) 29/71
19 0-MeOCgH24 SiMes 7a KN(SiMes)» 98 (8b) 22/78
20 a-naphthyl SiMes 7a KN(SiMe3), 98 (8d) 64/36
21 o-naphthyl SiMes 7a NaN(SiMes3), 98 (8d) 73127

a All reactions were carried out at —78 °C in a ratio of imine:salt:base = 1:1.2:1.2 on a 0.5-mmol scale in THF. ? Isolated yields based

on imine. ¢ Determined by 300 MHz 'H-NMR analysis.

sulfonium salt 3a, because of a known [2,3]-o-rearrange-
ment,” and arsonium salt 14, due to the relatively low
reactivity, gave low yields (entries 1—4 in Table 4).
Ylides from telluronium salt 15 and from sulfonium salt
3b reacted with N-tosylimines to form the desired aziri-
dines in reasonable yields (entries 5—9 in Table 4).
However, the trans/cis ratio of the product remained
almost the same as that obtained from phase-transfer
reactions, even in the presence of lithium ion (entries 1,
3,5,7,8,11, 12, 15, and 16 in Table 4), which is known
to play an important role in the control of the stereo-
chemistry in ylide chemistry.'® In some cases, pyrroline
product 9 was produced as a minor product (entries 3, 4,
and 7—9 in Table 4), the combined total yields still being
very high.

Considering that good stereoselectivity has never been
achieved in ylide epoxidation’®!® and ylide cyclo-
propanation’@ with the simplest sulfonium,’a21%b gr-
sonium,'®d and telluronium?®¢9 allylides, we tried to
improve the trans/cis selectivity by using a bulky tri-
methylsilyl-substituted allylide. It was not efficient
either through a telluronium ylide (entry 10 in Table 4)
or through sulfonium ylides, although quantitative yields

were achieved in all examples with sulfonium ylides
(entries 11—21 in Table 4). It is noteworthy that the ylide
generated from sulfonium salt 7a did not undergo the
expected [2,3]-o-rearrangement. This ylide could stand
for several hours at —78 °C without significant change.
Its extreme stability to rearrangement and its transform-
able SiMe; may make the dimethylsulfonium 3-tri-
methylsilylated allylide a very useful reagent for prepar-
ing vinyloxiranes, vinylcyclopropanes, and vinylaziri-
dines.

Conclusions

A method for preparing N-sulfonylvinylaziridines via
an ylide route, which may be regarded as the simplest
direct way to this kind of potentially useful compound
for organic synthesis, is reported. Allylic sulfonium salts
3, 5, and 7 reacted with aromatic, heteroaromatic, and
o,B-unsaturated N-sulfonylimines in CH;CN with KOH
as the base at room temperature to produce, respectively,
vinyl-, (3-phenylvinyl)-, and [3-(trimethylsilyl)vinyl]aziri-
dines in excellent yields. Generally, the reaction was
complete within several minutes. This aziridination
reaction has also been carried out with preformed ylides,

(18) (a) Maryanoff, B. E.; Reitz, A. B.; Mutter, M. S.; Inners, R. R,;
Almond, H. R., Jr. J. Am. Chem. Soc. 1985, 107, 1068. (b) Maryanoff,
B. E.; Reitz, A. B.; Mutter, M. S.; Inners, R. R.; Almond, H. R., Jr.;
Whittle, R. R.; Olofson, R. A. J. Am. Chem. Soc. 1986, 108, 7664. (c)
Schlosser, M.; Christmann, K. F. Angew. Chem., Int. Ed. Engl. 1966,
5, 126. (d) Vedejs, E.; Meier, G. P.; Snoble, K. A. J. 3. Am. Chem. Soc.
1981, 103, 2823. () Tang, Y. Ph.D. thesis, Shanghai Institute of
Organic Chemistry, CAS, 354 Fenglin Lu, Shanghai 200032, China,
1995.

(19) Epoxidation with sulfonium allylides: (a) Hatch, M. J. J. Org.
Chem. 1969, 34, 2133. (b) Feldman, K. S.; Fisher, T. E. Tetrahedron
1989, 45, 2969. With arsonium allylides: (c) Ousset, J. B.; Mioskowski,
C.; Solladie, G. Tetrahedron Lett. 1983, 24, 4419. (d) Ousset, J. B;
Mioskowski, C.; Solladie, G. Synth. Commun. 1983, 13, 1193. With
telluronium allylides: (e) Osuka, A.; Suzuki, H. Tetrahedron Lett. 1983,
24, 5109. (f) Zhou, Z.-L.; Sun, Y.-S.; Shi, L.-L.; Huang, Y.-Z. J. Chem.
Soc., Chem. Commun. 1990, 1439. (g) Zhou, Z.-L.; Shi, L.-L.; Huang,
Y.-Z. Tetrahedron Lett. 1990, 31, 7657.
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generated from sulfonium salts 3 and 7, arsonium salt
14, and telluronium salts 15 and 16 with a base in THF
at low temperature. In most examples, quantitative
yields were achieved. Since the tosyl group can be
cleaved by well-known procedures,? and the vinylaziri-
dines can be easily transformed to many very useful
synthetic intermediates, the value of this direct method
is apparent.

Experimental Section

Materials and General Procedure. All reagents and
solvents, unless otherwise specified, are commercially available
and used without further purification. THF was distilled
immediately prior to use from sodium/benzophenone ketyl
under nitrogen. All N-sulfonylimines 2 were prepared accord-
ing to literature method?! in reasonable yields. Sulfonium
salts 3a, 5, 7a, 11, and 13 were prepared by the reaction of
corresponding allylic bromides with sulfides in a small amount
of acetone at rt in excellent yields. Sulfonium salts 3b, 7b,
and 12 were obtained by a literature procedure’ except that
AgCIO, was used instead of AgBF.. Arsonium salt 14 was
prepared by the reaction of PhsAs and allyl bromide.'%
Telluronium salts 15 and 16 were prepared by the reaction of
i-Bu,Te?? with allyl bromide or 3-(trimethylsilyl)allyl bro-
mide,?® respectively, without solvent at room temperature in
guantitative yields.?* Sulfinimine 172° was obtained according
to a literature procedure.

General Procedure for Aziridination under Solid—
Liquid Phase-Transfer Conditions. A 25-mL flask con-
taining a magnetic stirring bar was charged with imine (2,
1.0 equiv), sulfonium salt (3, 5, 7, 11, 12, or 13, 1.2 equiv) or
arsonium salt 14 (1.2 equiv) and acetonitrile (4 mL, reagent
grade; it need not be dried before use). Powdered potassium
hydroxide (1.2 equiv) was subsequently added under stirring.
After the reaction was complete according to TLC, the reaction
mixture was filtered on a short neutral Al,Oz column to remove
inorganic salts. The filtrate was concentrated and chromato-
graphed on a neutral Al,O3; column with a mixture of light
petroleum (60—90 °C), ethyl acetate, and NEt; (8 :1 :1) as the
eluent to give pure product.

N-Tosyl-2-(p-nitrophenyl)-3-vinylaziridine (4a). cis-4a:
'H NMR (CDCls) 6 2.41 (s, 3 H), 3.69 (dd, J = 6.6, 7.1 Hz, 1
H), 4.13 (d, J = 7.3 Hz, 1 H), 5.17-5.24 (m, 2 H), 5.39—5.47
(m, 1 H), 7.27-7.43 (m, 4 H), 7.89 (dd, J = 1.7, 8.3 Hz, 2 H),
8.12 (dd, J = 2.7, 4.4 Hz, 2 H); MS m/z 345 (M* + 1, 3.3), 344
(M*, 1.2), 189 (100), 173 (3.7), 149 (39), 115 (9.7), 103 (22), 91
(17), 7 (28), 65 (9), HRMS calcd for C;7H16N204S (M+)
344.0831, found 344.0807. trans-4a: *H NMR (CDCl3) 6 2.45
(s, 3 H),3.29 (dd, J =3.9,9.6 Hz, 1 H), 4.11 (d, J = 3.9 Hz, 1
H), 5.16—5.63 (m, 2 H), 6.34 (ddd, J = 2.8, 7.0, 10.0 Hz, 1 H),
7.27-7.43 (m, 4 H), 7.83 (dd, J = 1.8, 6.7 Hz, 2 H), 8.15 (dd,
J=20,4.7 Hz, 2 H).

N-Tosyl-2-(o-methoxyphenyl)-3-vinylaziridine (4b). cis-
4b: 'H NMR (CDCls3) 6 2.40 (s, 3 H), 3.65 (dd, J = 4.5, 7.3 Hz,
1 H),3.77 (s, 3H), 4.20 (d, J = 7.3 Hz, 1 H), 5.11 (dd, J = 2.0,
10.1 Hz, 1 H), 5.25 (m, 1 H), 5.35-5.42 (m, 1 H), 6.77—6.85
(m, 2 H), 7.13-7.32 (m, 4 H), 7.88 (dd, J = 1.6, 6.7 Hz, 2 H);
MS m/z 330 (M* + 1, 5.8), 329 (M*, 0.8), 210 (10.7), 174 (100),
155 (11.4), 137 (33), 107 (27), 91 (34), 77 (9.5), 65 (13), 56 (16);
HRMS calcd for C15H19NO3S (M™) 329.1086, found 329.1048.

(20) (a) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett.
1995, 36, 6373. (b) Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1988,
53, 2367 and references cited therein. (c) Bellos, K.; Stamm, H.; Speth,
D. J. Org. Chem. 1991, 56, 6846. (d) Vedejs, E.; Lin, S. J. Org. Chem.
1994, 59, 1602.

(21) Love, B. E.; Raje, P. S.; Williams, T. C., Il. Synlett 1994, 493.

(22) Balfe, M. P.; Chaplin, C. A,; Phillips, H. J. Chem. Soc. 1938,
341.

(23) (a) Tones, T. K.; Denmark, S. E. Org. Synth. 1986, 64, 182. (b)
Grant, B.; Djerassi, C. J. Org. Chem. 1974, 39, 968.

(24) Zhou, Z.-L.; Huang, Y.-Z.; Tang, Y.; Chen, Z.-H.; Shi, L.-P.; Jin,
X.-L.; Yang, Q.-C. Organometallics 1994, 13, 1575.

(25) Yang, T.-K.; Chen, R.-Y.; Lee, D.-S.; Peng, W.-S.; Jiang, Y.-Z,;
Mi, A.-Q.; Jong. T.-T. J. Org. Chem. 1994, 59, 914.
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trans-4b: 'H NMR (CDClg) 6 2.38 (s, 3 H), 3.25 (dd, J = 4.2,
9.5 Hz, 1 H), 3.77 (s, 3 H), 4.34 (d, J = 4.3 Hz, 1 H), 5.45 (d,
J =10.5 Hz, 1 H), 5.55 (d, J = 16.8 Hz, 1 H), 6.35 (ddd, J =
7.1, 9.9, 16.9 Hz, 1 H), 6.77—-6.85 (m, 2 H), 7.13-7.32 (m, 4
H), 7.85 (d, 3 = 8.4 Hz, 2 H).
N-Tosyl-2-(2,6-dichlorophenyl)-3-vinylaziridine (4c).
cis-4c: 'H NMR (CDCls) 6 2.44 (s, 3 H), 3.76 (dd, J = 6.6, 6.7
Hz, 1 H), 4.07 (d, 3 = 7.0 Hz, 1 H), 5.09 (dd, J = 2.0, 9.9 Hz,
1 H), 5.18-5.29 (m, 1 H), 5.35 (dd, J = 2.1, 16.9 Hz, 1 H),
7.09-7.14 (m, 1 H), 7.19—-7.23 (m, 2 H), 7.27—-7.36 (m, 2 H),
7.90 (dd, J = 1.8, 8.3 Hz, 2 H); MS m/z 370 (1.89), 369 (0.87),
368 (M™, 2.82), 214 (72), 213 (16), 212 (100), 174 (53), 173 (10),
172 (78), 136 (12), 123 (10), 91 (29), 65 (16); HRMS calcd for
C17H15CI2NO,S (M*) 367.0201, found 367.0169. trans-4c: 'H
NMR (CDCls) 6 2.44 (s, 3 H), 3.50 (dd, J = 4.5, 9.6 Hz, 1 H),
4.12 (d, J = 4.5 Hz, 1 H), 5.52 (d, J = 10.3 Hz, 1 H), 5.65 (d,
J=16.8 Hz, 1 H), 6.30 (ddd, J =9.9, 9.9, 16.9 Hz, 1 H), 7.09—
7.14 (m, 1 H), 7.19-7.23 (m, 2 H), 7.27-7.36 (m, 2 H), 7.88
(dd, 3 =1.9, 8.3 Hz, 2 H).
N-Tosyl-2-(3-pyridinyl)-3-vinylaziridine (4d). cis-4d:
IH NMR (CDCl3) 6 2.43 (s, 3 H), 3.67 (dd, J = 6.9, 7.0 Hz, 1
H), 4.05 (d, J = 6.9 Hz, 1 H), 5.19-5.31 (m, 2 H), 5.41-5.47
(m, 1 H), 7.19-7.90 (m, 6 H), 8.46—8.51 (m, 2 H); MS m/z
301 (Mt + 1, 3.9), 300 (M*, 2.6), 261 (9), 171 (23), 155 (37),
139 (8.7), 107 (25), 91 (100), 77 (8.5), 65 (27); HRMS calcd for
Ci16H16N20.S (M*) 300.0932, found 300.0894. trans-4d: *H
NMR (CDCls) 6 2.40 (s, 3 H), 3.33 (dd, J = 4.0, 9.7 Hz, 1 H),
4.06 (d, J = 3.6 Hz, 1 H), 5.51 (d, J = 10.3 Hz, 1 H), 5.60 (d,
J=16.9Hz,1H),6.35(ddd, J=7.1,9.8, 16.9 Hz, 1 H), 7.19—
7.90 (m, 6 H), 8.46—8.51 (m, 2 H).
N-(Benzenesulfonyl)-2-(p-methylphenyl)-3-vinylaziri-
dine (4e). cis-4e: *H NMR (CDCls) 6 2.28 (s, 3 H), 3.62 (dd,
J=7.2,72Hz,1H),4.07 (d,J=7.2Hz,1 H),519-5.31 (m,
2 H), 5.39-5.46 (m, 1 H), 7.06—7.08 (m, 4 H), 7.42—7.61 (m, 3
H), 8.0 (dd, J = 1.4, 7.3 Hz, 2 H); MS m/z 300 (M* + 1, 4),
196 (2.5), 158 (100), 143 (5), 129 (4), 118 (58), 103 (3.9), 91
(10), 77 (19), 65 (4), 51 (7); HRMS calcd for C;7H17NO,S (M*)
299.0980, found 299.1024. trans-4e: *H NMR (CDClg) 6 2.28
(s,3H),3.32(dd,J=4.1,9.6 Hz,1 H),4.03(d, J=4.2Hz 1
H), 5.46 (d, 3 = 10.0 Hz, 1 H), 5.55 (d, 3 = 16.9 Hz, 1 H), 6.31
(ddd, 3 = 7.1, 9.9, 17.0 Hz, 1 H), 7.06—7.08 (m, 4 H), 7.42—
7.61 (m, 3 H), 7.95 (dd, J = 1.9, 5.6 Hz, 2 H).
N-(Benzenesulfonyl)-2-(p-methoxyphenyl)-3-vinylazir-
idine (4f). cis-4f: 'H NMR (CDClg) 6 3.60 (dd, 3 = 7.2, 7.2
Hz, 1 H), 3.73 (s, 3 H), 4.05 (d, 3 = 7.2 Hz, 1 H), 5.16—5.58
(m, 3 H), 6.75-6.81 (m, 2 H), 7.07—7.14 (m, 2 H), 7.43—7.61
(m, 3 H), 8.0 (d, J =7.9 Hz, 2 H); MS m/z 316 (M* + 1, 50),
227 (6.7), 196 (10), 174 (100), 160 (34), 147 (9), 137 (34), 122
(6.5), 109 (7.8), 91 (6.5), 77 (38), 56 (11); HRMS calcd for Cy7H17-
NOsS (M™) 315.0929, found 315.0939. trans-4f: 'H NMR
(CDCl3) 6 3.32 (dd, 3 = 4.2,9.6 Hz, 1 H), 3.73 (s, 3 H), 4.02 (d,
J =4.2Hz, 1H),516-5.58 (m, 2 H), 6.3 (ddd, J = 2.7, 7.2,
10.0 Hz, 1 H), 6.75—6.81 (m, 2 H), 7.07—7.14 (m, 2 H), 7.43—
7.61 (m, 3 H), 7.93 (dd, J = 1.4, 7.9 Hz, 2 H).
N-Tosyl-2-(p-chlorophenyl)-3-vinylaziridine (4g). cis-
4g: 'H NMR (CDCls) 6 2.44 (s, 3 H), 3.61 (dd, J = 7.1, 7.1 Hz,
1H),4.03(d,J=7.1Hz 1H),5.18-5.30 (m, 2 H), 5.40-5.16
(m, 1 H), 7.09-7.17 (m, 2 H), 7.21-7.35(m, 4 H), 7.88 (d, J =
8.3 Hz, 2 H); MS m/z 336 (0.76), 335 (0.50), 334 (1.87), 333
(0.31), 294 (1.4), 210 (6.2), 178 (100), 155 (10), 138 (58), 125
(2.7), 115 (8.5), 91 (20), 65 (8.4), 51 (2). Anal. Calcd for
C17H16CINO,S: C, 61.20; H, 4.83; N, 4.20. Found: C, 61.13;
H, 4.65; N, 4.44. trans-4g: 'H NMR (CDClg) 6 2.41 (s, 3 H),
3.26 (dd, 3 =4.1,9.7 Hz, 1 H), 4.01 (d, J =4.3 Hz, 1 H), 5.49
(d, 3 =10.2 Hz, 1 H), 5.57 (d, J = 16.9 Hz, 1 H), 6.32 (ddd, J
=9.9, 10.0, 17.0 Hz, 1 H), 7.09-7.17 (m, 2 H), 7.21-7.35 (m,
4 H), 7.83 (d, J =83 Hz, 2 H).
N-Tosyl-2-phenyl-3-vinylaziridine (4h). cis-4h: *H NMR
(CDCls) 6 2.40 (s, 3 H), 3.61 (dd, 3 = 7.3, 8.4 Hz, 1 H), 4.07 (d,
J=8.4Hz, 1H),5.14-5.28 (m, 2 H), 5.39 (m, 1 H), 7.15—-7.32
(m, 7 H), 7.88 (d, J = 8.2 Hz, 2 H); MS m/z 300 (M* + 1, 1.2),
299 (M*, 0.36), 260 (0.56), 155 (2.8), 144 (100), 128 (1.5), 115
(9.9), 104 (62.6), 91 (18), 77 (7.4), 65 (8.8), 51 (3). Anal. Calcd
for C17H17NO,S: C, 68.20; H, 5.72; N, 4.68. Found: C, 67.74;
H, 5.75; N, 4.94. trans-4h: *H NMR (CDCls) 6 2.36 (s, 3 H),
3.30(dd, 3 =4.1,9.6 Hz, 1 H), 4.04 (d, J = 4.2 Hz, 1 H), 5.45
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(d, 3 =16.9 Hz, 1 H), 5.54 (d, J = 16.9 Hz, 1 H), 6.33 (ddd, J
=7.1,9.9,17.0Hz, 1 H), 7.15-7.32 (m, 7 H), 7.83 (d, 3 = 8.2
Hz, 2 H).

N-Tosyl-2-(a-naphthyl)-3-vinylaziridine (4i). cis-4i: 'H
NMR (CDCls3) 6 2.39 (s, 3 H), 3.87 (dd, 3 = 7.3, 7.5 Hz, 1 H),
451 (d, 3 =7.2 Hz, 1 H), 4.98-5.16 (m, 2 H), 5.41 (dd, J =
1.4, 16.9 Hz, 1 H), 7.24—7.51 (m, 6 H), 7.80—7.83 (m, 2 H),
7.92-7.98 (m, 3 H); MS m/z 349 (M*, 0.56), 210 (1.37), 194
(100), 179 (2.5), 165 (11), 154 (47), 139 (6.8), 127 (10), 115 (3.6),
102 (0.6), 91 (10), 77 (1.5), 65 (5). Anal. Calcd for Cy1H1o-
NO,S: C, 72.18; H, 5.48; N, 4.01. Found: C, 71.96; H, 5.16;
N, 3.72. trans-4i: *H NMR (CDCls) 6 2.39 (s, 3 H), 3.30 (dd, J
=4.3,9.8Hz,1H),458(d,J=4.3Hz,1H),555(d,J=105
Hz, 1 H), 6.54 (ddd, J = 10.0, 10.0, 17.0 Hz, 1 H), 7.1 (d, J =
7.1 Hz, 1 H), 7.24—7.51 (m, 5 H), 7.70—7.74 (m, 2 H), 7.92—
7.98 (m, 3 H).

N-Tosyl-2-(p-nitrophenyl)-3-(trans-g-phenylvinyl)azir-
idine (6a). cis-6a: 'H NMR (CDCls) ¢ 2.44 (s, 3 H), 3.86 (dd,
J=175,7.8Hz, 1H), 419 (d, J = 7.3 Hz, 1 H), 550 (dd, J =
8.1,159 Hz, 1 H), 6.75 (d, J = 15.9 Hz, 1 H), 7.13—-7.47 (m, 9
H), 7.91 (d, J = 8.3 Hz, 2 H), 8.16 (d, J = 6.6 Hz, 2 H); MS
m/z 420 (M*, 5.4), 278 (5), 265 (100), 244 (7), 219 (30), 191
(7), 155 (12), 139 (19), 115 (50), 91 (51), 77 (11), 65 (19); HRMS
calcd for CazH2oN204S (M+) 420.1144, found 420.1125. trans-
6a: 'H NMR (CDCls) 6 2.40 (s, 3 H), 3.43 (dd, 3 = 3.9, 9.4 Hz,
1 H),4.22 (d, J =4.0 Hz, 1 H), 6.71 (dd, J = 9.5, 15.8 Hz, 1
H), 6.82 (d, J = 15.8 Hz, 1 H), 7.13—7.47 (m, 9 H), 7.84 (d, J
= 8.3 Hz, 2 H), 8.16 (d, J = 6.8 Hz, 2 H).

N-Tosyl-2-(0-methoxyphenyl)-3-(trans-#-phenylvinyl)-
aziridine (6b). cis-6b: 'H NMR (CDClz) 6 2.42 (s, 3 H), 3.77
(s,3H),384(dd,J=78,77Hz,1H),428(d,J=73Hz 1
H), 5.56 (dd, J =8.2,15.9 Hz, 1 H), 6.79 (d, J = 16.3 Hz, 1 H),
7.14—7.46 (m, 11 H), 7.91 (dd, J = 1.8, 6.9 Hz, 2 H); MS m/z
405 (M*, 0.71), 250 (100), 235 (5.7), 191 (1.1), 178 (1.6), 134
(4.5), 115 (38), 91 (22), 77 (4), 65 (6), 51 (2.4). Anal. Calcd for
C2H23NOsS: C, 71.08; H, 5.72; N, 3.45. Found: C, 70.82; H,
5.48; N, 3.11. trans-6b: *H NMR (CDClg) 6 2.39 (s, 3 H), 3.39
(dd, 3 =4.3,8.8Hz,1H),381(s,3H),445(d,J=4.2Hz 1
H), 6.74 (dd, 3 =9.3, 15.6 Hz, 1 H), 6.85 (d, J = 15.5 Hz, 1 H),
7.14—7.46 (m, 11 H), 7.86 (d, J = 8.3 Hz, 2 H).

N-Tosyl-2-phenyl-3-(trans-f-phenylvinyl)aziridine (6c).
cis-6¢: *H NMR (CDCl3) 6 2.43 (s, 3 H),3.80 (dd, J=7.9,7.8
Hz, 1 H),4.14(d, J=7.1 Hz, 1 H), 5.59 (dd, J = 8.5, 16.1 Hz,
1H),6.74 (d, I = 15.5 Hz, 1 H), 7.15—7.42 (m, 12 H), 7.91 (dd,
J = 1.4, 6.7 Hz, 2 H); MS m/z 375 (M*, 0.82), 220 (100), 204
(2.6), 191 (2.8), 178 (1.8), 165 (1.7), 139 (2.8), 115 (67), 104
(9.3), 91 (31), 77 (4.8), 65 (7.8), 51 (2.3). Anal. Calcd for
C23H21NO,S: C, 73.57; H, 5.64; N, 3.73. Found: C, 73.37; H,
5.44; N, 3.32; HRMS calcd for CigHi4sN (M* — Ts) 220.1126,
found 220.1134. trans-6¢: 'H NMR (CDCl3) 6 2.39 (s, 3 H),
3.44(dd, J=4.1,9.4 Hz, 1 H), 416 (d, J = 4.1 Hz, 1 H), 6.66
(dd, J = 9.3, 15.8 Hz, 1 H), 6.80 (d, J = 15.4 Hz, 1 H), 7.15—
7.42 (m, 12 H), 7.84 (d, J = 8.4 Hz, 2 H).

N-(Benzenesulfonyl)-2-(p-methylphenyl)-3-(trans-g-
phenylvinyl)aziridine (6d). cis-6d: *H NMR (CDCls) 6 2.29
(s,3H),381(dd,J=7.9,79Hz,1H),413(d,J=7.2Hz, 1
H), 5.62 (dd, J = 8.4, 16.0 Hz, 1 H), 6.73 (d, J = 15.7 Hz, 1H),
6.99—7.60 (m, 12 H), 8.03 (d, J = 8.0 Hz, 2 H); MS m/z 376
(M*+ + 1, 12), 375 (M*, 30), 260 (39), 234 (100), 219 (23), 202
(6), 156 (4), 141 (13), 115 (15), 105 (7.6), 91 (9.6), 77 (34), 65
(3.5); HRMS calcd for C3H2:NO,S (M*) 375.1293, found
375.1314. trans-6d: 'H NMR (CDCls) ¢ 2.25 (s, 3 H), 3.48 (dd,
J=42,90Hz,1H),415(d,J=4.3Hz,1H),6.69(dd,J=
9.0, 15.8 Hz, 1 H), 6.78 (d, J = 15.8 Hz, 1 H), 6.99—7.60 (m,
12 H), 7.94 (d, J = 8.2 Hz, 2 H).

N-(Benzenesulfonyl)-2-(p-methoxyphenyl)-3-(trans-f-
phenylvinyl)aziridine (6e). cis-6e: *H NMR (CDCls) 6 3.76
(s,3H),3.79(dd,J=8.4,84Hz,1H),413(d, J=84Hz 1
H), 5.62 (dd, 3 = 8.4, 16.0 Hz, 1 H), 6.79 (d, J = 16.1 Hz, 1H),
7.12—7.56 (m, 12 H), 8.03 (d, 3 = 7.0 Hz, 2 H); MS m/z 391
(M*, 11), 317 (6), 276 (21), 250 (100), 223 (25), 191 (9), 178
(23), 165 (11), 145 (13), 135 (46), 115 (34), 105 (19), 91 (23), 77
(62), 65 (8), 51 (18); HRMS calcd for Cy3H21NOsS (M)
391.1242, found 391.1284. trans-6e: *H NMR (CDClg) o 3.47
(dd, 3 =4.3,9.3 Hz,1H),3.76 (s,3H),4.13(d, J=4.0Hz, 1
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H), 6.68 (dd, 3 = 9.6, 16.1 Hz, 1 H), 6.78 (d, J = 16.1 Hz, 1 H),
7.12—-7.56 (m, 12 H), 7.95 (d, J = 8.8 Hz, 2 H).
N-Tosyl-2-(p-chlorophenyl)-3-(trans-g-phenylvinyl)-
aziridine (6f). cis-6f: *H NMR (CDCls3) 6 2.43 (s, 3 H), 3.79
(dd, 3 =17.7, 7.8 Hz, 1 H), 4.09 (d, J = 7.4 Hz, 1 H), 5.54 (dd,
J=8.4,16.1 Hz, 1 H), 6.74 (d, J = 16.0 Hz, 1 H), 7.14-7.45
(m, 11 H), 7.83 (d, 3 = 8.3 Hz, 2 H); MS m/z 409 (M*, 16), 294
(38), 254 (100), 219 (69), 202 (9), 155 (36), 140 (14), 115 (26),
91 (57), 77 (8), 65 (14); HRMS calcd for CasHzCINO,S (MY)
409.0903, found 409.0926. trans-6f: 'H NMR (CDCls) 6 2.40
(s,3H),3.40 (dd, J=4.4,9.6 Hz, 1 H), 411 (d, J =4.2Hz, 1
H), 5.63 (dd, J = 9.4, 15.8 Hz, 1 H), 6.80 (d, J = 15.9 Hz, 1 H),
7.14—7.45 (m, 11 H), 7.90 (d, J = 8.3 Hz, 2 H).
N-(Benzenesulfonyl)-2-(trans-g-phenylvinyl)-3-(trans-
p-phenylvinyl)aziridine (6g). trans-6g: *H NMR (CDCls)
0 3.63 (dd, J = 3.1, 10.9 Hz, 2 H), 6.24 (dd, J = 10.8, 15.9 Hz,
2 H), 6.79 (d, 3 = 15.8 Hz, 2 H), 6.55 (d, J = 7.3 Hz, 2 H),
7.01-7.51 (m, 11 H), 7.95 (d, J = 9.0 Hz, 2 H); MS m/z 387
(M*, 2.1), 272 (10.5), 246 (100), 231 (4), 202 (2.6), 168 (6.6),
130 (12), 115 (45), 103 (4.4), 91 (19), 77 (19), 51 (4.6); HRMS
caled for C4H2;1NO,S (M*) 387.1293, found 387.1276.
N-(Benzenesulfonyl)-cis-4,5-diphenyl-4,5-dihydro-
azepine (18): 'H NMR (CDClg) 6 3.77 (d, J = 5.9 Hz, 2 H),
5.23(dd, 3 =6.0,9.4 Hz,2 H), 6.84 (d,J = 9.6 Hz, 2 H), 7.01—
7.51 (m, 13 H), 7.91 (d, 3 = 7.6 Hz, 2 H).
N-Tosyl-2-phenyl-3-[#-(trimethylsilyl)vinyl]aziridine
(8a). cis-8a: *H NMR (CDCls) 6 —0.04 (s, 9 H), 2.43 (s, 3 H),
3.63 (dd, J =7.6, 7.0 Hz, 1 H), 4.01 (d, J = 7.3 Hz, 1 H), 5.41
(dd, 3 =7.3,18.71 Hz, 1 H), 6.12 (d, J = 18.5 Hz, 1 H), 7.15—
7.34 (m, 7 H), 7.89 (d, J = 8.3 Hz, 2 H); MS m/z 372 (M* + 1,
0.32), 228 (0.8), 218 (6), 217 (22), 216 (100), 200 (18), 149 (9.4),
113 (4.3), 91 (19), 85 (7), 73 (47), 59 (11). Anal. Calcd for
C20H2sNO,SSi: C, 64.65; H, 6.78; N, 3.77. Found: C, 64.28;
H, 6.84; N, 3.38. trans-8a: 'H NMR (CDClIs;) 6 0.03 (s, 9 H),
2.40 (s, 3 H), 3.27 (dd, 3 = 4.0,9.0 Hz, 1 H), 4.08 (d, 3 = 4.1
Hz, 1 H), 6.21 (d, J = 18.4 Hz, 1 H), 6.42 (dd, J = 8.9, 18.3 Hz,
1 H), 7.15-7.34 (m, 7 H), 7.82 (d, 3 = 8.3 Hz, 2 H).
N-Tosyl-2-(o-methoxyphenyl)-3-[f-(trimethylsilyl)-
vinyl]aziridine (8b). cis-8b: *H NMR (CDCIz) 6 0.01 (s, 9
H), 2.51 (s, 3 H), 3.81 (dd, J = 7.2, 7.2 Hz, 1 H), 3.85 (s, 3 H),
4.27 (d,3J=7.3Hz,1H),552(dd,J=7.3,18.8 Hz, 1 H), 6.20
(d, J=19.2 Hz, 1 H), 6.89—6.93 (m, 2 H), 7.22 (d, J = 7.4 Hz,
1 H), 7.31-7.44 (m, 3 H), 8.01 (d, 3 = 8.2 Hz, 2 H); MS m/z
319 (2), 268 (6), 267 (23), 266 (83), 246 (100), 231 (6.2), 216
(7.2), 139 (10), 113 (4), 91 (31), 73 (68), 59 (10), 45 (6). Anal.
Calcd for C,1H27NO3SSi: C, 62.80; H, 6.78; N, 3.49. Found:
C, 62.57; H, 6.58; N, 3.64. trans-8b: 'H NMR (CDCls) 6 0.25
(s, 9 H), 2.49 (s, 3 H), 3.40 (dd, J = 4.1, 9.1 Hz, 1 H), 3.88 (s,
3H),454(d,J=4.0Hz,1H),6.34(d, J=18.6 Hz, 1 H), 6.61
(dd, 3 = 9.0, 18.7 Hz, 1 H), 6.89—-6.93 (m, 2 H), 7.12 (d, J =
7.0 Hz, 1 H), 7.31-7.44 (m, 3 H), 7.95 (d, 3 = 8.3 Hz, 2 H).
N-Tosyl-2-(p-chlorophenyl)-3-[#-(trimethylsilyl)vinyl]-
aziridine (8c). cis-8c: 'H NMR (CDCIz) 6 0.00 (s, 9 H), 2.50
(s,3H),3.71(dd, J=7.2,7.1 Hz, 1 H), 405(d, J=7.2 Hz, 1
H), 5.48 (dd, 3 =7.1,18.6 Hz, 1 H), 6.21 (d, J = 18.5 Hz, 1 H),
7.18—7.23 (M, 2 H), 7.28—7.42 (m, 4 H), 7.96 (dd, J = 1.4, 6.7
Hz, 2 H); MS m/z 254 (3), 253 (11), 252 (48), 251 (25), 250
(100), 236 (3.8), 234 (7.6), 199 (8), 169 (3.6), 149 (12), 139 (5.5),
121 (13), 91 (19), 85 (12), 73 (64), 65 (7.8), 59 (20), 45 (8). Anal.
Calcd for CyH24CINO,SSi: C, 59.16; H, 5.96; N, 3.45.
Found: C,59.14; H, 5.90; N, 3.68. trans-8c: *H NMR (CDCly)
6 0.21 (s, 9 H), 2.47 (s, 3 H), 3.32 (dd, J = 4.2, 9.1 Hz, 1 H),
413 (d, J=4.1 Hz, 1 H), 6.31(d, J = 18.4 Hz, 1 H), 6.50 (dd,
J =9.0, 18,5 Hz, 1 H), 7.18—7.23 (m, 2 H), 7.28—7.42 (m, 4
H), 7.90 (dd, J = 1.6, 6.6 Hz, 2 H).
N-Tosyl-2-(a-naphthyl)-3-[#-(trimethylsilyl)vinyl]aziri-
dine (8d). cis-8d: *H NMR (CDCl3) 6 0.00 (s, 9 H), 2.68 (s, 3
H), 4.20 (dd, J = 7.4, 7.3 Hz, 1 H), 4.77 (d, J = 7.2 Hz, 1 H),
5.55 (dd, J = 7.5, 18.7 Hz, 1 H), 6.40 (d, J = 18.7 Hz, 1 H),
7.47—7.63 (m, 4 H), 7.73—7.81 (m, 2 H), 7.99—-8.02 (m, 1 H),
8.06—8.12 (m, 1 H), 8.18—8.30 (m, 3 H); MS m/z 268 (8.4),
267 (30), 266 (100), 250 (12), 193 (4.6), 168 (7.6), 139 (10.4),
127 (2.7), 113 (3.4), 91 (14), 73 (59), 59 (10), 45 (5.4); HRMS
calcd for Ci7HxoNSi (Mt — Ts) 266.1365, found 266.1339.
trans-8d: 'H NMR (CDCls) 4 0.48 (s, 9 H), 2.66 (s, 3 H), 3.61
(dd, 3 =4.2,9.2 Hz, 1 H), 4.95 (d, J = 4.1 Hz, 1 H), 6.57 (d, J
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= 18.4 Hz, 1 H), 6.96 (dd, J = 9.2, 18.4 Hz, 1 H), 7.47—7.63
(m, 4 H), 7.73-7.81 (m, 2 H), 7.99—8.02 (m, 1 H), 8.06—8.12
(m, 1 H), 8.18—8.30 (m, 3 H).

N-Tosyl-2-(p-chlorophenyl)-3-pyrroline (9): *H NMR
(CDCls) 6 2.40 (s, 3 H), 4.29 (m, 1 H), 4.34 (ddd, J = 2.3, 4.8,
14.6 Hz, 1 H), 5.48 (ddd, J = 2.2, 4.7, 5.3 Hz, 1 H), 5.61 (ddd,
J=22,4.4,6.2Hz, 1H),5.80(ddd, J=2.0, 4.0, 6.2 Hz, 1 H),
7.17-7.26 (m, 6 H), 7.52 (dd, J = 1.6, 6.6 Hz, 2 H); MS m/z
336 (6.8), 335 (5), 334 (19), 333 (4.7), 222 (52), 180 (33), 178
(100), 155 (30), 143 (23), 115 (24), 91 (45), 75 (2.8), 65 (13), 51
(2); HRMS calcd for Ci7H16CINO,S (M*) 333.0590, found
333.0559.

General Procedure for Aziridination at —78 °C. A
solution of the base (n-BuLi in hexanes, LiN(SiMes),, NaN-
(SiMe3)2, KN(SiMes),, or LiBr (1.2 equiv) + NaN(SiMe3), in
THF, 1.2 equiv) was added dropwise to a solution of a
sulfonium (3a, 3b, 7a, 7b), telluronium (15, 16), or arsonium
(14) salt in 6 mL of THF at —78 °C under N,. The mixture
was stirred for 5-30 min (5 min for 3a, 30 min for others),
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and imine (1.0 equiv) in 4 mL THF was subsequently added.
The reaction mixture was then allowed to warm to room
temperature within 2—3 h. The reaction mixture was filtered
on a short neutral Al,O3; column to hydrolyze the excess active
species and remove inorganic salts. The filtrate was concen-
trated and chromatographed on a neutral Al;O3 column with
a mixture of light petroleum (60—90 °C), ethyl acetate, and
NEt; (8:1:1) as the eluent to give pure product.
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